Abstract
Proxy reconstructions suggest that mid-Holocene East African temperatures were warmer than today between 8 and 5 ka BP, but climate models cannot replicate this warming. Precessional forcing caused a shift of maximum insolation from boreal spring to fall in the mid-Holocene, which may have favored intense warming at the start of the warm season. Here, we use three Porites corals from Kenya that represent time windows from 6.55 to 5.87 ka BP to reconstruct past sea surface temperature (SST) seasonality from coral Sr/Ca ratios in the western Indian Ocean during the mid-Holocene. Although the Indian monsoon was reportedly stronger in the mid-Holocene, which should have amplified the seasonal cycle of SST in the western Indian Ocean, the corals suggest reduced seasonality (mean 3.2 °C) compared to the modern record (mean 4.3 °C). Warming in austral spring is followed by a prolonged period of warm SSTs, suggesting that an upper limit of tropical SSTs under mid-Holocene conditions was reached at the start of the warm season, and SSTs then remained stable. Similar changes are seen at the Seychelles. Bootstrap estimates suggest a reduction in SST seasonality of 1.3 ± 0.22 °C at Kenya and 1.7 ± 0.32 °C at the Seychelles. SST seasonality at Kenya corresponds to present-day SST seasonality at 55° E–60° E, while SST seasonality at the Seychelles corresponds to present day SST seasonality at ~ 65° E. This implies a significant westward expansion of the Indian Ocean warm pool. Furthermore, the coral data suggests that SST seasonality deviates from seasonal changes in orbital insolation due to ocean–atmosphere interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.