Abstract

This study was conducted to investigate the cascade involving DNA damage, senescence, and senescence-associated secretory phenotype (SASP) in experimental diabetes and in a four-year follow-up study in patients with pre-diabetes and type 2 diabetes. Kidney, lung, and liver were studied in 4 months diabetic db/db mice and age-matched controls for the presence of DNA damage and fibrosis. DNA damage (comet-tail-length and ɤH2Ax-positivity in white blood cells), urinary p21-excretion, and plasma IL-6 and TGF-β1 were determined from 115 healthy participants, 34 patients with pre-diabetes and 221 with type 2 diabetes. Urinary albumin-creatinine-ratio, lung function, and transient elastography of the liver were performed in a prospective follow-up study over 4 years. db/db mice showed an increased nuclear ɤH2AX signal in all tissues as compared to the background control. Markers for DNA damage, senescence, and SASP were increased in patients with diabetes. The presence of nephropathy, restrictive lung disease (RLD), and increased liver stiffness was in a cross-sectional design associated with increased markers for DNA damage, senescence, and SASP. The progression of nephropathy over 4 years was predicted by increased DNA damage, senescence, and SASP, while the progression of RLD was associated with increased DNA damage and IL-6 only. The progression of liver stiffness was not associated with any of these parameters. HbA1c was not predictive for progression. In db/db mice, the cascade of DNA damage is associated with diabetes-related complications. In patients with diabetes, the progression of complications in the kidney and lung is predicted by markers reflecting DNA damage, and senescence-triggered organ fibrosis. This work was supported by the German Research Foundation (DFG) in the CRC 1118 and CRC 1158, by the GRK DIAMICOM, by the German Center for Diabetes Research (DZD e.V.), and by the Ministry of Science, Research and the Arts, Baden-Württemberg (Kompetenznetzwerk Präventivmedizin).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.