Abstract

Gaseous oxidized mercury (Hg2+) monitoring is one of the largest challenges in the mercury research field, where existing methods cannot simultaneously satisfy the measurement requirements of both accuracy and time precision, especially in high-particulate environments. Here, we verified that dual-stage cation exchange membrane (CEM) sampler is incapable of gaseous elemental mercury (Hg0) uptake even if particulate matter is trapped on CEM, whereas the Hg2+ capture efficiency of the sampler is more than 90%. We then developed a Cation Exchange Membrane-Coupled Speciated Atmospheric Mercury Monitoring System (CSAMS) by coupling the dual-stage CEM sampler with the commercial Tekran 2537/1130/1135 system and configuring a new sampling and analysis procedure, so as to improve the monitoring accuracy of Hg2+ and ensure the simultaneous measurement of Hg0, Hg2+, and Hgp in 2 h time resolution. We deployed the CSAMS in urban Beijing in September 2021 and observed an unprecedented elevated Hg2+ during the daytime with an average amplitude of 510 pg m-3. Using a zero-dimensional box model, the elevated Hg2+ production rate was attributed to high atmospheric oxidant concentrations, Hg0 heterogeneous and interfacial oxidation processes on the surface of atmospheric particles, or potential unknown oxidants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call