Abstract

We numerically investigate elementary excitations of the Heisenberg alternating-spin chains with two kinds of spins, 1 and $1/2,$ antiferromagnetically coupled to each other. Employing a recently developed efficient Monte Carlo technique as well as an exact-diagonalization method, we verify the spin-wave argument that the model exhibits two distinct excitations from the ground state which are gapless and gapped. The gapless branch shows a quadratic dispersion in the small-momentum region, which is of the ferromagnetic type. With the intention of elucidating the physical mechanism of both excitations, we make a perturbation approach from the decoupled-dimer limit. The gapless branch is directly related to spin 1's, while the gapped branch originates from cooperation of the two kinds of spins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.