Abstract
Electron spin resonance (ESR) was used to study the ground state properties of two kinds of spin (S) one Heisenberg antiferromagnetic chain systems, namely a uniform chain system (HAUC), which is well known as the Haldane system, and a bond alternating chain system (HABA). To investigate and compare the features of the ground state, two nickel chain compounds doped with non-magnetic Zn2+ impurities were studied. The HAUC was modelled with Ni(1,3-pn)2(μ-NO2)(ClO4)(1,3-pn = 1,3-propanediamine), abbreviated as NINO, while the HABA was modelled with Ni(333-tet)(μ-NO2)(ClO4) (333-tet = bis-(3-aminopropyl)-1,3-propanediamine), abbreviated as NTENP. Both systems have a singlet ground state with an excitation gap. The ground state of NINO approximates well to the valence bond solid state, thus producing S = 1/2 spins at the sites neighbouring the impurities. The angular dependence of the ESR signals of NINO:Zn is explained by the anisotropy of the g tensor for spin 1/2. On the other hand, the ground state of NTENP is expected to be in the singlet dimer phase based on the ratio of alternating bond strengths. In this case, it is expected that the S = 1 spins will appear at the sites neighbouring the impurities without forming the singlet dimer. From ESR studies of NTENP:Zn was observed the triplet state (S = 1), induced by the impurity doping, which is consistent with the above picture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.