Abstract
Our study aimed to assess the soil quality in Punjab's Hoshiarpur district through a meticulous analysis of nutrient and elemental composition. Using a variety of analytical techniques, including Neutron Activation Analysis (NAA), external Particle-induced Gamma-ray Emission (PIGE) an Ion beam analysis Technique, and energy-dispersive X-ray fluorescence (ED-XRF), we delved into soil characterization for 22 agricultural soil samples in the Punjab region. Within the NAA framework, utilizing the Pneumatic Carrier Facility and the self-serve facility at Dhruva reactor in Mumbai, a brief 1-min irradiation procedure identified pivotal elements-Na, Mg, V, Al, Mn, and K. Conversely, an extended neutron irradiation process of approximately 4h within the self-serve facility enabled the estimation of nearly 12 elements, including Rare Earth Elements (REEs), Transition elements, and other significant elements. The external PIGE technique quantified low Z elements (Na, Mg, Al, and Si), contributing to our analytical arsenal. Rigorously validating both NAA and PIGE methodologies, we compared results meticulously against established geological standard reference materials-specifically USGS RGM-1 and USGS AGV-1.Instrumental in elemental analysis, ED-XRF spectroscopy fortified our investigative endeavors by quick assessment of ten crucial elements. The elemental analysis revealed notable accumulations of Mn and Zn in the soil, surpassing the suggested permissible limits, whereas Co, Cr, and Pb were found to be within the recommended thresholds set by WHO/UNEP. Beyond elemental profiling, our study extended to estimate the accumulation levels of various elements utilizing ecological risk factors such as Contamination Factor, Potential Ecological Risk Index, Pollution Load Index, and Geoaccumulation Factor. Our findings highlighted significant accumulation of REEs including La, Sm and Yb.. This evaluation sheds new light on the interplay between soil composition and environmental health, emphasizing the need for advanced accessible agricultural technologies to prevent and forecast contaminant discharge in arable soil. This commitment aligns with our broader goal of advancing sustainable practices in soil management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.