Abstract

The spatial distribution of Zn and Cd in leaves of the heavy metal hyperaccumulator species Arabidopsis halleri, a land plant in the Brassicaceae family of angiosperms, is determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Detected intensities of nuclides of the environmental pollutants Zn and Cd are referenced to nuclides of the naturally abundant elements C, Mg, P, Ca, and Rb as internal standards, in order to compensate for widespread experimental issues in whole-leaf laser ablation. Referencing occurs by dividing the signal intensity of the analyte by the corresponding intensity of the internal standard. In order to avoid large quotients that occur during division by small numbers, quotients of pixels for which the internal standard is no higher than the background are set to zero. The effects of referencing on a loss of laser focus, overlapping layers of leaf tissue and cell damage within the imaged leaf tissue are addressed specifically. It is reported that referencing to 25Mg, 31P, 44Ca or 85Rb can skew the results of Zn and Cd distribution because of their different ion mobility within leaves or other element-specific effects. This is particularly valid in the leaf venation and in regions of leaves where cell damage has occurred. Considering all aspects, 13C was found to be best suited among the investigated elements for referencing of leaves, because it stabilizes the resulting distributions of Zn and Cd even in samples affected by experimental issues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call