Abstract
In the course of attempting to date the host rocks of Viburnum metal deposits from the US state of Missouri, the purpose was here a detailed examination and contribution of the constitutive minerals of glauconite-rich pellets to the isotopic dating of these deposits. The glauconite pellets of Cambrian sediments hosting metal concentrates were dated here by the K-Ar method to complement earlier published Rb-Sr data. The study confirmed that the preparation and purification step of such glauconite pellets is especially critical with the need for a specific cleaning step to not only remove the detrital counterparts but also all Sr-rich components occurring as accessory minerals such as the carbonates, sulfates and oxides that apparently “contaminated” the Rb-Sr results. The K-Ar data and the previously released Rb-Sr results obtained on strictly the same glauconite-rich separates outline clear age discrepancies that can be summarized by higher, “older” K-Ar age data at about 440, 415 and 390 Ma, and lower, “younger” Rb-Sr data at about 400 and 370 Ma. The glauconite separates of most samples being apparently not contaminated by various detrital K-rich crystals, the two dating methods should have been affected similarly. The analytical dispersion seems, then, to result from a diagenetic event that affected the Rb-Sr system more than the K-Ar system by a plausible addition/subtraction of one or several Sr-rich and Rb-poor and, therefore, K-poor minerals. In turn, the studied pellets were apparently impregnated after deposition by flowing metal-rich fluids in a low-temperature environment not affected by a significant thermal impact. The Bonneterre Formation acted apparently as a regional drain for metal-rich fluids that percolated throughout the region at a probable burial depth of less than 2000 m.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have