Abstract

In this paper, a methodology is presented to count the number of atoms in heterogeneous nanoparticles based on the combination of multiple annular dark field scanning transmission electron microscopy (ADF STEM) images. The different non-overlapping annular detector collection regions are selected based on the principles of optimal statistical experiment design for the atom-counting problem. To count the number of atoms, the total intensities of scattered electrons for each atomic column, the so-called scattering cross-sections, are simultaneously compared with simulated library values for the different detector regions by minimising the squared differences. The performance of the method is evaluated for simulated Ni@Pt and Au@Ag core–shell nanoparticles. Our approach turns out to be a dose efficient alternative for the investigation of beam-sensitive heterogeneous materials as compared to the combination of ADF STEM and energy dispersive X-ray spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call