Abstract

The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges. Based on the extended Hamilton’s principle for the elastic dynamics system, the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method. Through numerical calculation, curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained, and three edges clamped and the other edge elastically restrained versus the spring constant, locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained. Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.