Abstract

A STEM/EDS study of a porous Ga oxide film formed by an anodization process was conducted in this study to examine the crystalline structure of the film and the elemental distribution in the oxide film before and after heat treatment. The as-formed anodic film with a morphology resembling the well-known porous anodic Al oxide film was amorphous, crystallizing after heat treatment at 600 °C without changing the morphology and elemental distribution. The EDS elemental maps disclosed the duplex nature of the pore wall oxide; the phosphate anion was contaminated in the outer oxide layer next to the pores, and the inner layer consisted of relatively pure Ga oxide, practically free from phosphate. The similarity of morphology and elemental distributions between the porous anodic Al and Ga oxides suggests that the growth of both anodic oxide films proceeds under the same mechanism. In addition, crystallized porous Ga oxides are expected to be applied to fabricate various functional devices requiring geometrically controlled semiconductor nanohole arrays, such as devices for hydrogen formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call