Abstract

AbstractA particularly efficient redox mediator for electron transfer between FAD‐dependent glucose dehydrogenase (FAD‐GDH) and carbon nanotube (CNT) based electrodes can be obtained via electrosynthetic oxidation of pyrene in aqueous buffer solution. 1H‐NMR spectroscopic studies reveal the formation of a 2 : 1 mixture of 1,6‐pyrenedione and 1,8‐pyrenedione at the electrode. The formed pyrenedione exhibits a well‐defined surface‐bound redox system at −0.1 V vs. SCE and provides excellent electron transfer kinetics with this enzyme. Furthermore, the π‐system of pyrenedione allows improved stacking behavior with the CNT walls, leading to enhanced stabilities compared to commonly used mediators like naphthoquinone. The electrosynthesis of pyrenedione for catalytic glucose oxidation is optimal at pH 2 using cyclic voltammetry or chronoamerometry. It is envisioned that the electrosynthetic methodology can be expanded to form different redox mediators for a series of enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call