Abstract
Covalent organic frameworks (COFs) have emerged as potent material platforms for engineering advanced membranes to tackle challenging separation demands. However, the synthesis of COF membranes is currently hampered by suboptimal productivity and harsh synthesis conditions, especially for ionic COFs with perdurable charges. Herein, ionic COFs with charged nanochannels are electrically synthesized on conductive supports to rapidly construct composite membranes for charge-selective separations of small molecules. The intrinsic charging nature and strong charge intensity of ionic COFs are demonstrated to collectively dominate the membrane growth. Spontaneous repairing to diminish defects under the applied electric field is observed, in favor of generating well-grown COF membranes. Altering electrosynthetic conditions realizes the precise control over the membrane thickness and thus the separation ability. Electrically synthesized ionic COF membranes exhibit remarkable molecular separation performances due to their relatively ordered and charged nanochannels. With these charge-selective pathways, the membranes enable the efficient sieving of charged and neutral molecules with analogous structures. This study reveals an electrical route to synthesizing COF thin films, and showcases the great potential of ionic nanochannels in precise separation based on charge selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.