Abstract

Cavitation phenomenon in dielectric fluids has been a recent topic of interest in theory and experiment. We study a dielectric fluid–nanoparticle system subjected to an external electric field using molecular dynamics simulations. Electric fields ranging from 0.042 to 0.25 V/Å are applied to a water and tin dioxide system. Cavitation is observed in simulations with both SPC/E water and the hydrogen bonding polarizable model. The cavitation onset time displays a stretched exponential relaxation response with respect to the applied electric field with an exponent β = 0.423 ± 0.08. This is in accordance with the exact theoretical value for systems with long-ranged forces. Cavity growth rates are divided into two phases, a spherical growth phase and a cylindrical one. Both are reported as a function of the applied electric field. The structure of the electric field is analyzed both spatially and temporally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call