Abstract

Author SummaryAnimal and plant cells contain a molecular-scale “railway” network, in which the tracks, called microtubules, radiate out from the cell centre and locomotive proteins, called kinesins, haul their molecular cargoes along the microtubule tracks. This railway system transports many different cargoes to where they are needed, so it is crucial for the cell's organization and function. Breakdowns in this transport system can cause diseases like Alzheimer's, and drugs that temporarily halt transport make powerful anti-cancer agents. Precisely how kinesin motor proteins move along their microtubule tracks is an important question in biology. We know that some kinesins have twin “heads” that alternately bind to and step along microtubules in a coordinated walking action. But more usually, kinesins have only one head. How single-headed kinesins produce force and movement is poorly understood. In this study, we address this question and show that electrical attraction between single kinesin heads and microtubules is a critical factor deciding the direction of movement: each time the head approaches a microtubule, it slides forwards by the electrical attraction between the engine and the track.

Highlights

  • IntroductionAt least 14 sub-families have been identified [1,2,3], the members of which play a wide variety of roles in intracellular transport, including vesicle and organelle transport, cytoskeletal reorganization, and chromosome segregation [4]

  • Kinesins form a large family of ATP dependent microtubule-based motor proteins

  • How single-headed kinesins produce force and movement is poorly understood. We address this question and show that electrical attraction between single kinesin heads and microtubules is a critical factor deciding the direction of movement: each time the head approaches a microtubule, it slides forwards by the electrical attraction between the engine and the track

Read more

Summary

Introduction

At least 14 sub-families have been identified [1,2,3], the members of which play a wide variety of roles in intracellular transport, including vesicle and organelle transport, cytoskeletal reorganization, and chromosome segregation [4]. Underpinning these diverse activities is a coupling of ATP turnover, microtubule bind-release cycles, and unidirectional mechanical motion. Several features of the mechanisms by which kinesins generate force and movement are known, but many uncertainties remain. Less is known about this mechanism, by which individual kinesin heads generate directional force

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.