Abstract
Particle balance is investigated using a Mach probe at the top of the scrape-off layer of circular ohmically heated L-mode plasmas in the Tore Supra tokamak [G. Giruzzi etal., Nucl. Fusion 49, 104010 (2009)]. Contributions from both poloidal EXB flows and ionization sources are found to be small. As a result the local parallel flow is a response of the radial flux distribution between the two strike points of open field lines, and the density profile is determined by the field-line-integrated radial flux. By scanning the poloidal position of the strike point on a secondary limiter situated at the outboard midplane, an indirect poloidal mapping of the radial flux distribution is obtained. The radial flux is centered at the outboard midplane and is relatively well described by a Gaussian distribution of half poloidal width of about 50° at the last closed flux surface, decaying to about 30° in the far scrape-off layer. The turbulent radial flux measured locally with a rake probe shows a reasonable agreement with the poloidal mapping obtained by the Mach probe. It is shown than the radial convective velocity decays along radius at the plasma top but should increase with radius at the outboard midplane.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have