Abstract

In this paper, we show that the far field electrostatic potential created by a highly charged finite size cylinder within the nonlinear Poisson–Boltzmann (PB) theory, is remarkably close to the potential created within the linearized PB approximation by the same object at a well-chosen fixed potential. Comparing the nonlinear electrostatic potential with its linear counterpart associated to a fixed potential boundary condition (called the effective surface potential), we deduce the effective charge of the highly charged cylinder. Values of the effective surface potential are provided as a function of the bare surface charge and Debye length of the ionic solution. This allows to compute the anisotropic electrostatic interaction energy of two distant finite rods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.