Abstract
In this paper, we present the research results on focusing and transport of an intense (up to 100 A) nonrelativistic (up to 20 kV) pulsed electron beam using an axially symmetric device with a high-current plasma lens configuration. The electron source is based on electron extraction from the plasma of a hollow-anode vacuum arc discharge. The arc is initiated by a dielectric surface flashover. The emission hole is covered with a fine mesh grid. The beam is extracted and accelerated in a diode-type electro-optical system formed between the grid surface and an open anode plasma boundary. The anode plasma is produced in an electron beam transport channel through residual gas ionization by beam electrons and a plasma lens discharge. The plasma lens configuration of crossed electric and magnetic fields provides an attractive means to obtain a stable low-pressure plasma discharge. This geometry allows the compression of the electron beam in diameter from 6 to 1 cm with more than 100- <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\rm A}/{\rm cm}^{2}$</tex></formula> beam current density at the collector.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have