Abstract
Naturally occurring extracellular matrices (ECMs) such as small intestinal submucosa (SIS) have received significant attention for their therapeutic applications in tissue repair and regeneration. However, there have been no reports exploring the electrostatic properties of naturally occurring ECMs as a means to control transgene delivery. In the present study, we electrostatically adsorbed DNA polyplexes onto SIS for transfection upon cellular adhesion. To associate polyplexes with SIS, we first used a streaming potential method to characterize the surface charge of SIS and obtained a negative zeta potential at neutral pH, which can be attributed to the abundant glycosaminoglycan (GAG) content in SIS. We next prepared cationic polyethylenimine (PEI)/DNA polyplexes to associate with the negatively charged SIS for conjugation. Using the Cy TM3 dye-labeled control DNA as the reporter, we visualized the adsorption of PEI/DNA polyplexes at the SIS surface. Using luciferase, green fluorescent protein and β-galactosidase as reporter proteins, we showed that the adsorbed PEI/DNA polyplexes were active and capable of carrying out transfection upon cellular adhesion, indicating that the electrostatic binding of polyplexes with SIS was reversible. In addition, the SIS-mediated transfection was contact-dependent: separation of SIS from the target cells via a 0.5 mm porous polyester membrane significantly reduced the efficiency of transfection in comparison to a direct seeding of cells onto SIS. We conclude that electrostatic immobilization of PEI/DNA polyplexes on SIS is capable of initiating efficient transgene delivery, which can be a useful tool in developing localized gene transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.