Abstract

Smart devices are quickly becoming ubiquitous with the rise of portable biosensors and the internet of things. There exists particular interest in enhancing common objects to have smart capabilities and finding inexpensive solutions for diagnostic tools. One such example is transforming paper items into interactive devices and point-of-care analytic products. Due to the lightweight, flexible, and cost-efficient qualities of paper, unobtrusively powering these devices remains an outstanding problem. In this paper, we demonstrate an electrostatic human-touch powered energy harvesting system, integrated with flexible painted conductive electrodes on paper. This system harvests 8.5 nJ of energy and reaches a voltage of 1.3 V on a 10 nF energy storage capacitor. This technology not only provides a method of powering paper-based products with routine human gestures but can also detect human touch for input communication to sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.