Abstract

In the mixed-valence complex [RuIII(NH3)5(μ-dpypn)FeII(CN)5] with the flexible bridging ligand 1,3-di(4-pyridyl)propane (dpypn), electrostatic interactions between the {Ru(NH3)5}3+ and {Fe(CN)5}3− moieties drive a strong bending of dpypn and approximation of the RuIII and FeII centers, from which the enhanced electronic coupling between metal ions produces an intense intervalence-transfer absorption in the near-infrared region. Density functional theory calculations corroborate both the electrostatic bending in this heterobinuclear complex and a linear geometry in the homobinuclear counterparts [Ru(NH3)5(μ-dpypn)Ru(NH3)5]5+ and [Fe(CN)5(μ-dpypn)Fe(CN)5]5−, for which no evidence of electronic coupling was found because of the separation between metal centers. Furthermore, the heterobinuclear species formed an inclusion complex with β-cyclodextrin where the imposed linear geometry prevents significant electronic coupling and intervalence charge transfer between the RuIII and FeII centers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call