Abstract
Electrostatic actuation is a promising approach to compensate for misalignment of bonded, multi-layered microsystem devices. The present work discusses the performance of electrostatic actuators used for in-plane misalignment compensation in an atom chip comprising an optical cavity. Experimental investigation revealed that the central frame suspending the mirrors can be moved between 3-5 m in the in-plane direction for the applied DC voltage of 90 volts. Future work involves characterizing the mirror displacement for optical tuning function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.