Abstract

Wheat glutenin, the highly crosslinked protein from wheat, was electrospun into scaffolds with ultrafine fibers oriented randomly and evenly in three dimensions to simulate native extracellular matrices of soft tissues. The scaffolds were intrinsically water-stable without using any external crosslinkers and could support proliferation and differentiation of adipose-derived mesenchymal stem cells for soft tissue engineering. Regeneration of soft tissue favored water-stable fibrous protein scaffolds with three-dimensional arrangement and large volumes, which could be difficult to obtain via electrospinning. Wheat glutenin is an intrinsically water-stable protein due to the 2% cysteine in its amino acid composition. In this research, the disulfide crosslinks in wheat glutenin were cleaved while the backbones were preserved. The treated wheat glutenin was dissolved in aqueous solvent with an anionic surfactant and then electrospun into bulky scaffolds composed of ultrafine fibers oriented randomly in three dimensions. The scaffolds could maintain their fibrous structures after incubated in PBS for up to 35 days. In vitro study indicated that the three-dimensional wheat glutenin scaffolds well supported uniform distribution and adipogenic differentiation of adipose derived mesenchymal stem cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.