Abstract

With the continuous development of nanomaterials, nanofibers prepared by electrospinning have gradually occupied people’s vision because of their unique advantages, such as crisscross network and extracellular matrix-mimicking structure, high drug loading efficiency, and sustained release kinetics. Traditionally, electrospun fibers are mainly used as filter materials, wound dressings, and tissue engineering scaffolds, while their wide applications are limited to cancer nanomedicine applications due to their dense network structure. In recent years, two-dimensional fiber membranes have been transformed into short fibers that can be reconstructed to form fibrous rings or microspheres for cancer theranostics. Herein, this paper provides an overview of the recent advances in the design of electrospun short fibers that retain the advantages of nanofibers with good dispersibility for different nanomedicine applications, including cancer cell capture, cancer treatments, and cancer theranostics. The rational preparation of electrospun short fibers that are available to boost the development of nanomedicine is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.