Abstract

Nerve guidance conduits (NGCs) can provide suitable microenvironment for nerve repair and promote the proliferation and migration of Schwann cells (SCs). Thus, we developed nerve guidance conduits (NGCs) with polypyrrole-coated polycaprolactone nanoyarns (PPy-PCL-NYs) as fillers in this study. PCL-NYs with the oriented structure were prepared with a double-needle electrospinning system and then PPy was coated on PCL-NYs via the in situ chemical polymerization. Subsequently, PCL nanofibers were collected around nanoyarns by the conventional electrospinning process as the outer layer to obtain PPy-PCL-NY nerve guidance conduits (PPy-PCLNY NGCs). PPy-PCL-NYs were analyzed by SEM, FTIR and XPS. Results showed that PPy was homogeneously and uniformly deposited on the surface of PCL-NY. Strain-stress curves and the Young’s modulus of PPy-PCL-NYs were investigated compared with those of non-coated PCL-NYs. Studies on biocompatibility with SCs indicated that PPy-PCL-NY NGCs were more conducive to the proliferation of SCs than PCL-NY NGCs. In summary, PPy-PCL-NY NGCs show the promising potential for nerve tissue engineering repair and regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call