Abstract
The demand for the energy was upturned the development of energy storage devices that can effectively be utilized for the storage and supply of energy that generated from the green and sustainable energy sources. Among the different energy storage systems explored, lithium ion batteries (LIBs) play a significant role since it can offer better and best electrochemical properties. Fabrication of battery components is noteworthy in order to ensure enhanced battery performance. Anodes which serve as the positive electrode in LIBs play a major role, and currently, carbonaceous anodes are mostly used in LIBs. Even if they can deliver high electronic conductivity, low electrochemical potential and high safety than the lithium metal, the specific capacity exhibited by this material is observed to be low. In order to meet this major challenge in next-generation LIBs, transition metal oxide-based anodes are extensively studied because of their large reversible lithium storage properties. Iron oxide (Fe2O3 and Fe3O4) based anodes are one of the bests owing to their high theoretical capacity (1007 mAh g−1) which is attributed by the reversible conversion reaction that taking place between the lithium ion and metal oxides. Moreover, the environmental friendliness and low cost make it suitable anode in LIBs. However, the low electronic conductivity, large volume change during cycling that results in poor capacity retention and formation of unstable SEI are the serious concern with this anode material. One of the effective methods that used for resolving these issues is electrospinning which is considered as the most versatile technique for the fabrication of nanosized transition metal oxides. Fabrication of nanosized and nano-morphological structures as well as the structural modification can completely improvise the electrochemical performance of iron oxide-based anodes. The different aspects for the structural modification of iron oxide-based anodes and their electrochemical performance in LIBs will discuss in detail in this chapter.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have