Abstract

Onion is rich in bioactive and volatile compounds with antioxidant activity. However, the pungent odor of volatile compounds (VOCs) released restricts its use. The encapsulation of red onion extract by electrospinning is an alternative to mask this odor and protect its bioactive compounds. The main objective of this study was to encapsulate red onion bulb extract (ROE) in different concentrations into zein nanofibers by electrospinning and evaluate their thermal, antioxidant, and hydrophilicity properties. The major VOC in ROE was 3(2H)-furanone, 2-hexyl-5-methyl. Incorporating ROE into the polymeric solutions increased electrical conductivity and decreased apparent viscosity, rendering nanofibers with a lower average diameter. The loading capacity of ROE on fibers was high, reaching 91.5% (10% ROE). The morphology of the nanofibers was random and continuous; however, it showed beads at the highest ROE concentration (40%). The addition of ROE to the nanofibers increased their hydrophilicity. The nanofibers' antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl, nitric oxide, and hydroxyl radicals ranged from 32.5% to 57.3%. The electrospun nanofibers have the potential to protect and mask VOCs. In addition, they offer a sustainable alternative to the synthetic antioxidants commonly employed in the food and packaging industry due to their antioxidant activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call