Abstract
MEAs with nanofiber mat electrodes containing Pt/C catalyst and Nafion binder were fabricated and evaluated. The electrodes were prepared by electrospinning a solution of catalyst powder, salt-form Nafion (with Na+, Li+, or Cs+ as the sulfonic acid counterion), and a carrier polymer of either polyethylene oxide or poly(acrylic acid). The carrier polymer was extracted prior to MEA testing by a hot water soaking step. The resulting fibers were 15%–17% porous, with a core–shell-like morphology (a coating of primarily Nafion on the fiber surface). MEAs with anode/cathode catalyst loadings of 0.1 mgPt cm−2 each and a Nafion 211 membrane produced high power at both high and low relative humidity (RH) conditions in H2/air fuel cell tests, e.g., a maximum power density of 919 mW cm−2 at 100% RH and 832 mW cm−2 at 40% RH for a test at 80 °C and 200 kPaabs. The presence of nm-size pores within the fibers trapped water via capillary condensation during low RH feed gas testing, thus maintaining a high proton conductivity of the Nafion binder in the anode and cathode while minimizing/eliminating ionic isolation of catalyst particles in low water content, poorly conductive binder.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.