Abstract

The decadeoxynucleotide d(AAAAATTTTT)2 in duplex form and the double-helical polynucleotide poly(dA).poly(dT) have been studied by Raman and infrared (IR) spectroscopy under a variety of environmental conditions. The IR spectra have been taken of cast films and compared to the IR spectra of the alternating poly(dA-dT), which shows clear B-genus and A-genus vibrational spectra under conditions of high (greater than 92%) and low (75%) relative humidity (RH). From the IR data, it is shown that d-(AAAAATTTTT)2 and poly(dA).poly(dT) adopt a B-genus conformation in films with high water content. When the relative humidity of the film is decreased, the IR spectra reflect a gradual evolution of the geometry of both d(AAAAATTTTT)2 and poly(dA).poly(dT) into a form intermediate between the B genus and A genus, but the IR spectrum of a pure A genus has not been obtained. In these DNAs at 75% RH, the IR bands of adenosine have the same frequencies as those found in poly(dA-dT) at 75% RH where the local furanose conformation is C3' endo/anti, but the thymidine frequencies do not resemble those of poly(dA-dT) at 75% RH but rather those of poly(dA-dT) at high humidities. It is concluded that both poly(dA).poly(dT) and d(AAAAATTTTT)2 adopt a fully heteronomous duplex geometry in cast films at low humidity. For studies in aqueous solution the Raman effect was employed. As a model for the heteronomous conformation in solution, the duplex poly(rA).poly(dT) was used.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call