Abstract

Oxidative stress caused by the harsh microenvironment after implantation of an artificial graft with mismatching mechanical properties usually triggers inflammation responses, which have adverse impacts on tissue regeneration. For coping with these problems, in this work, bioactive fibrous scaffolds were developed from specially synthesized carboxylated poly(ester urethane)urea (PEUU) and gelatin (Gel) by encapsulating pterostilbene (Pte) for the first time. The prepared electrospun membranes exhibited self-adaptable mechanical properties with high elasticity owing to the bonded electrospun fibers, cross-linking network between PEUU and Gel, and the inherent flexibility of the PEUU polymer in the fibrous matrix. The PEUU/Gel/Pte electrospun membrane containing 7% Pte could promote in vitro proliferation of human umbilical vein endothelial cells, and regulate vascular smooth muscle cells with excellent antioxidant properties via free radical scavenging. In vivo results in a rat subcutaneous implantation model further demonstrated the positive effect of the specially prepared PEUU/Gel/Pte scaffold on both normal cell growth and anti-inflammatory by promoting cellularization and polarizing macrophages toward the M2 phenotype. These PEUU/Gel/Pte electrospun membranes with adaptability benefit to tissue regeneration by modulating inflammation responses, especially applications in vascular regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call