Abstract

Recently, vascular smooth muscle cells (SMCs) have been electrosprayed concurrently with electrospun biodegradable elastomeric poly (ester urethane) urea (PEUU) to form cell-microintegrated scaffolds [1]. These scaffolds exhibit soft tissue-like elastomeric mechanical properties [2], and are thus promising candidates for repair or replacement of diseased cardiovascular tissues. The level of cellular deformation during in vitro mechanical training will likely influence the extracellular matrix formation. However, these deformations are likely complex and dependent upon both scaffold properties and the cellular interactions with the local fibers. Our objective is to quantify microintegrated cellular deformations in response to biaxial scaffold stretches, using the nuclear aspect ratio (NAR) as an index of overall cellular deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.