Abstract

This letter reports on the characterization of iron containing nanofibers using a polyvinyl alcohol (PVA)-based solution in a batch electrospinning processing method. Variation of iron content within the pre-fiber solution, and characterization of fiber size and porosity are important for the use of these nanomaterials in sensing. Simulated non-porous fibers are compared with nanofibers obtained utilizing this method. Pre-calcination (thermal) fibers had diameters of 243 nm on average with a standard deviation of ±43 nm and a standard error of ±4.53 nm. Fabrication of mesoporous iron-based nanofibers was achieved after the calcination of the iron/PVA fibers. With the calcination process, we produced fibers with 32-nm diameters, and a standard deviation of ±12 nm and a standard error of ±1.41 nm. The error between model and experimental results is 37.5% for producing Fe3O4 fibers. This error percentage and oversized dimensions suggest near total conversion to Fe3O4 occurring due to calcination as well as creating mesoporous fibers. [2017-0014]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.