Abstract

The production of highly porous and three-dimensional (3D) scaffolds with biomimicking abilities has gained extensive attention in recent years for tissue engineering (TE) applications. Considering the attractive and versatile biomedical functionality of silica (SiO2) nanomaterials, we propose herein the development and validation of SiO2-based 3D scaffolds for TE. This is the first report on the development of fibrous silica architectures, using tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) during the self-assembly electrospinning (ES) processing (a layer of flat fibers must first be created in self-assembly electrospinning before fiber stacks can develop on the fiber mat). The compositional and microstructural characteristics of obtained fibrous materials were evaluated by complementary techniques, in both the pre-ES aging period and post-ES calcination. Then, in vivo evaluation confirmed their possible use as bioactive scaffolds in bone TE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.