Abstract
Plant-derivedcellulose biomaterials have been employed in various tissue engineering applications. In vivo studies have shown the remarkable biocompatibility of scaffolds made of cellulose derived from natural sources. Additionally, these scaffolds possess structural characteristics that are relevant for multiple tissues, and they promote the invasion and proliferation of mammalian cells. Recent research using decellularized apple hypanthium tissue has demonstrated the similarity of its pore size to that of trabecular bone as well asits ability to effectively support osteogenic differentiation. The present study furtherexamined the potential of apple-derived cellulose scaffolds for bone tissue engineering (BTE) applications and evaluated their in vitro and in vivo mechanical properties. MC3T3-E1 preosteoblasts were seeded in apple-derived cellulose scaffolds that were thenassessed for their osteogenic potential and mechanical properties. Alkaline phosphatase and alizarin red S staining confirmed osteogenic differentiation in scaffolds cultured in differentiation medium. Histological examination demonstrated widespread cell invasion and mineralization across the scaffolds. Scanning electron microscopy (SEM) revealed mineral aggregates on the surface of the scaffolds, andenergy-dispersive spectroscopy (EDS)confirmed the presence of phosphate and calcium elements. However, despite a significant increase in the Young's modulus following cell differentiation, it remained lower than that of healthy bone tissue. In vivo studies showed cell infiltration and deposition of extracellular matrix within the decellularized apple-derivedscaffolds after 8 weeks of implantation in rat calvaria. In addition, the force required to remove the scaffolds from the bone defect was similar to the previously reported fracture load of native calvarial bone. Overall, this study confirms that apple-derived cellulose is a promising candidate for BTE applications. However, the dissimilarity between its mechanical properties and those of healthy bone tissue may restrict its application to low load-bearing scenarios. Additional structural re-engineering and optimization may be necessary to enhance the mechanical properties of apple-derived cellulose scaffolds for load-bearing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.