Abstract

In this study, grafted gelatin with oligoaniline (GelOA) was synthesized and then mixed with Poly (vinyl alcohol) (PVA). Several scaffolds with different ratio of PVA/GelOA were electrospun to fabricate electroactive scaffolds. GelOA was characterized using Fourier‐transform infrared spectroscopy (FTIR); moreover, nanofiber properties were evaluated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) analyses. Nanofibers diameter was decreased with aniline oligomer increment form 300 to 150 nm because of the hydrophobic nature of the aniline oligomer. Aniline oligomer electroactivity was studied using cyclic voltammetry, which exhibited two redox peaks at 0.4 and 0.6. Moreover, aniline oligomer enhancement resulted in melting point increasing from 220°C to 230°C because of the crystallinity increment. To assess the biocompatibility of nanofibers, cell viability and cell adhesion were tracked using mesenchymal stem cell (MSCs). It was revealed that the presence of aniline oligomer leads to enhancing the conductivity, thermal properties and lowering the degradation rate and drug release. Among of different scaffolds, sample with high content of GelOA shows better behavior in physical and biological properties. Accumulative drug releases under applied electrical field at 40 minutes showed that the drug release for stimulated condition is about 33% more than the unapplied electrical field one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.