Abstract

Electrorheological behavior of silicone oil suspensions of macroporous poly[(glycidyl methacrylate)-co-(ethylene dimethacrylate)]) (0.60 : 0.40 w) hydrolyzed to various degrees was investigated. Polarizability of particles expressed by the particle dipole coefficient and, consequently, pseudoplasticity of the system at low shear rates after application of an external electric field steeply increased with the hydrolysis degree of the copolymer. As the size and shape of particles remain unchanged during hydrolysis, a series of model suspensions with the same hydrodynamic properties (Newtonian or slightly pseudoplastic when no electric field was applied) but with different intensity of the electrorheological effect could be prepared. Under these conditions, the use of Mason number failed to correlate the apparent viscosity of suspensions of particles with different polarizability in the electric field. On the other hand, when polarizability of particles of a suspension system changes due to a higher temperature, a single curve in the plot of apparent viscosity vs. the Mason number could be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.