Abstract

Herein, an innovative way of designing a star-shaped gold nanoconfined multiwalled carbon nanotube-engineered sensoring interface (AuNS@MWCNT//GCE) is demonstrated for quantification of methionine (MTH); a proof of concept for lung metastasis. The customization of the AuNS@MWCNT is assisted by surface electrochemistry and thoroughly discussed using state-of-the-art analytical advances. Micrograph analysis proves the protrusion of nanotips on the surface of potentiostatically synthesized AuNPs and validates the hypothesis of Turkevich seed (AuNP)-mediated formation of AuNSs. In addition, a facile synthesis of electropotential-assisted transformation of MWCNTs to luminescent nitrogen-doped graphene quantum dots (Nd-GQDs avg. ∼4.3 nm) is unveiled. The sensor elucidates two dynamic responses as a function of CMTH ranging from 2 to 250 μM and from 250 to 3000 μM with a detection limit (DL) of ∼0.20 μM, and is robust to interferents except for tiny response of a similar -SH group bearing Cys (<9.00%). The high sensitivity (0.44 μA·μM-1·cm-2) and selectivity of the sensor can be attributed to the strong hybridization of the Au nanoparticle with the sp2 C atom of the MWCNTs, which makes them a powerful electron acceptor for Au-SH-MTH interaction as evidenced by density functional theory (DFT) calculations. The validation of the acceptable recovery of MTH in real serum and pharma samples by standard McCarthy-Sullivan assay reveals the holding of great promise to provide valuable information for early diagnosis as well as assessing the therapeutic consequence of lung metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.