Abstract

Background: Gene therapy is a promising approach for the treatment of various diseases, including cancer, hereditary disorders, and some viral infections. The development of efficient and safe gene delivery systems is essential for facilitating gene trans-fer to various organs and tissues in vivo. Objective: In this review, we briefly describe the principal mechanisms of gene delivery systems, particularly electroporation, and discuss the latest advancements in the application of electro-poration for in vivo gene transfer. Methods: A narrative review of all the relevant publication known to the authors was conducted. Results: In recent years, electroporation-based strategies have emerged as an auspicious and versa-tile platform for efficient and controlled delivery of various biomolecules, including nucleic acids. Applying electric pulses of enough magnitude leads to the formation of hydrophilic pores in the cell membrane and allows the entry of otherwise membrane-impermeant molecules, such as DNA. Alt-hough electroporation has been initially developed for in vitro transfection of cells, it has recently advanced to preclinical in vivo applications and finally to clinical trials. Conclusion: Electroporation has already entered the clinical practice for antitumor therapy and may be an essential part of future personalized treatments. Given the ability of electroporation to deliver multiple genes in a single event, it will also certainly be further developed both as a stand-alone de-livery approach and when coupled with other technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call