Abstract

The present experiments were conducted to determine the electrophysiological and pharmacological properties of substantia nigra neurons in the mouse. These cells were studied using extracellular single unit recording and microiontophoretic techniques in both chloral hydrate anesthetized mice and in vitro mouse slices. In the in vivo preparation the substantia nigra zona compacta neurons had long duration action potentials (> 4 ms), fired from 1 to 7 impulses/s, and the cells discharged with either a decremental burst pattern or with a regular pattern. The dopamine agonists apomorphine and d-amphetamine, given systemically, decreased the firing rate of these neurons and the dopamine receptor blocker, haloperidol, reversed these effects. The zona compacta neurons were inhibited by the micro-iontophoretic application of dopamine and γ-aminobutyric acid, and systemic haloperidol selectively attenuated the effects of dopamine. In vitro recordings from substantia nigra zona compacta and zona reticulata neurons were generally similar to those found in vivo, both in terms of the electrophysiological and pharmacological properties. However, the zona compacta cells fired faster in vitro than in vivo, and the firing pattern in vitro tended to be pacemaker-like, especially when recordings were made in an incubation medium which blocks synaptic transmission (e.g. low Ca 2+/high Mg 2+). Our data indicate that: (a) in vivo mouse zona compacta neurons exhibit the same electrophysiological and pharmacological properties as rat dopamine-containing neurons; (b) in vitro mouse dopaminergic neurons fire with pacemaker regularity when in a low Ca 2+/high Mg 2+ environment; and (c) in vitro studies offer an approach to examine the basic properties of dopaminergic neurons exclusive of feedback pathways and other afferent inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.