Abstract

The alarming rise of antibiotic resistance in Gram-negative bacteria has emerged as a major global health challenge. A key factor contributing to this crisis is the low permeability of the bacterial outer membrane, which acts as a barrier that prevents antibiotics from entering the cell. Protein channels embedded in this outer membrane selectively regulate the influx of hydrophilic compounds, including antibiotics. To combat antibiotic resistance, understanding the molecular mechanisms governing antibiotic permeability through bacterial membrane channels is crucial. This knowledge is key towards elucidating their roles in studing antibiotic resistance. By compiling and analysing the flux data from multiple electrophysiological reversal potential experimental studies, which involves measuring zero-current potentials and the corresponding single-channel conductance, we can calculate the flux of charged antibiotics/compounds across different Gram-negative bacterial outer membrane channels. Through this comprehensive synthesis, this review aims to advance our understanding and stimulate discussions about the physicochemical factors influencing the flux of antibiotics through bacterial membrane protein channels, ultimately enhancing our knowledge in this area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.