Abstract

To explore the electrophysiological effects of hyperpolarization activated cyclic nucleotide gated channel 4 (HCN4) overexpression in rat neonatal cardiomyocytes mediated by recombinant adenovirus. Ventricular cardiomyocytes were obtained from 20 neonatal rats. Recombinant adenovirus carrying HCN4 gene, AdHCN4, a dominant isoform of hyperpolarization activated cyclic nucleotide gated cation channel gene in cardiac transduction system, was constructed and used to transfect the neonatal rat ventricular cardiomyocytes. Untransfected cardiomyocytes were used as controls. RT-PCR and immunofluorescence cytochemistry were used to detect the HCN4 mRNA and protein expression. The electrophysiological characteristics of infected cardiomyocytes were studied by patch clamp. The mRNA and protein expression levels of HCN4 in AdHCN4 infected cardiomyocytes were both markedly higher than those of the control cardiomyocytes. AdHCN4 caused a significant increase in The spontaneous rate in the transfected cardiomyocytes was 92.5 + 7.4 bpm, significantly higher than that of the control cells (68.9 + 6.2 bpm, P < 0.05). Patch clamp experiments showed that the pacemaker current density in the AdHCN4 infected cardiomyocytes was 115.7 + 7.8 pA/pF, significantly higher than that of the untransfected cells (7.2 + 0.6 pA/pF, P < 0.05). Overexpression of HCN4 can enhance the autorhythmicity of neonatal cardiomyocytes and significantly increase the spontaneous beat rate. HCN4 channel gene may represent a candidate gene in gene therapy for bradycardia diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.