Abstract
Major depressive disorder (MDD) is a significant neurological disorder that imposes a substantial burden on society, characterized by its high recurrence rate and associated suicide risk. Clinical diagnosis, which relies on interviews with psychiatrists and questionnaires used as auxiliary diagnostic tools, lacks precision and objectivity in diagnosing MDD. To address these challenges, this study proposes an assessment method based on EEG. It involves calculating the phase lag index (PLI) in alpha and gamma bands to construct functional brain connectivity. This method aims to find biomarkers to assess the severity of MDD and suicidal ideation. The convolutional inception with shuffled attention network (CISANET) was introduced for this purpose. The study included 61 patients with MDD, who were classified into mild, moderate, and severe levels based on depression scales, and the presence of suicidal ideation was evaluated. Two paradigms were designed for the study, with EEG analysis focusing on 32 selected electrodes to extract alpha and gamma bands. In the gamma band, the classification accuracy reached 77.37% in the visual paradigm and 80.12% in the auditory paradigm. The average accuracy in classifying suicidal ideation was 93.60%. The findings suggest that gamma bands can be used as potential biomarkers differentiating illness severity and identifying suicidal ideation of MDD, and that objective assessment methods can effectively assess MDD The objective assessment method can effectively assess the severity of MDD and identify suicidal ideation of MDD patients, which provides a valuable theoretical basis for understanding the biological characteristics of MDD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have