Abstract

The electrophysical characteristics of a multilayer memristive Au/Ta/ZrO2(Y)/TaOx/TiN structure have been studied. Electron and ion electret effects due to charge carrier trapping and ion migration polarization in the dielectric have been discovered. The influence of traps on electroforming processes and resistive switching has been established. The values of activation energy and ion and trap concentrations have been determined. The effect of resistive switching stabilization has been found, which is associated with the specific bilayer structure of TaOx and self-forming tantalum nanoclusters. The nanoclusters serve as electric field concentrators in the course of electroforming and subsequent resistive switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.