Abstract
The open-shell catalytically active species, like radical cations or radical anions, generated by one-electron transfer of precatalysts are widely used in energy-consuming redox reactions, but their excited-state lifetimes are usually short. Here, a closed-shell thioxanthone-hydrogen anion species (3), which can be photochemically converted to a potent and long-lived reductant, is generated under electrochemical conditions, enabling the electrophotocatalytic hydrogenation. Notably, TfOH can regulate the redox potential of the active species in this system. In the presence of TfOH, precatalyst (1) reduction can occur at low potential, so that competitive H2 evolution can be inhibited, thus effectively promoting the hydrogenation of imines. In the absence of TfOH, the reducing ability of the system can reach a potency even comparable to that of Na0 or Li0, thereby allowing the hydrogenation, borylation, stannylation and (hetero)arylation of aryl halides to construct C-H, C-B, C-Sn, and C-C bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.