Abstract

An enzyme analysis of diploid and triploid Paragonimus westermani was conducted using starch gel electrophoresis. In total, 16 enzymes, probably encoded by 18 loci, were studied for 3 populations of the diploid form sampled from 2 localities, and 4 populations of the triploid form from 4 localities. Comparison of the enzymes of the triploid and the diploid digeneans showed 5 different patterns: diaphorase (EC 1.6.2.2), glutamic-oxaloacetic transaminase (EC 2.6.1.1), hexokinase (EC 2.7.1.1), leucylglycylglycine aminopeptidase (EC 3.4.1.3), and phosphoglucomutase (EC 2.7.5.1). On the basis of the numbers of bands and their patterns, all individuals of the triploid are probably heterozygous at each of these 5 loci and homozygous at the remaining 13 loci. The occurrence of fixed heterozygotes found in triploid populations cannot be easily explained by only a single mutation. It is suggested that the variability may have been introduced by hybridization with a different sub-species or a closely related species and may, thus, have been maintained since the time of the origin of triploids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.