Abstract
Electrophoretic deposition (EPD) of 8 mol% yttria‐stabilized zirconia (YSZ) electrolyte thin film has been carried out onto nonconducting porous NiO‐YSZ cermet anode substrate using a fugitive and electrically conducting polymer interlayer for solid oxide fuel cell (SOFC) application. Such polymer interlayer burnt out during the high‐temperature sintering process (1400°C for 6 h) leaving behind a well adhered, dense, and uniform ceramic YSZ electrolyte film on the top of the porous anode substrate. The EPD kinetics have been studied in depth. It is found that homogeneous and uniform film could be obtained onto the polymer‐coated substrate at an applied voltage of 15 V for 1 min. After the half‐cell (anode + electrolyte) is co‐fired at 1400°C, a suitable cathode composition (La0.65Sr0.3MnO3) thick film paste is screen printed on the top of the sintered YSZ electrolyte. A second stage of sintering of such cathode thick film at 1100°C for 2 h finally yield a single cell SOFC. Such single cell produced a power output of 0.91 W/cm2 at 0.7 V when measured at 800°C using hydrogen and oxygen as fuel and oxidant, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.