Abstract

Dense yttria-stabilized zirconia (YSZ) electrolyte films were successfully fabricated onto anode substrates using a modified dry pressing process. The film thickness was uniform, and could be readily controlled by the mass of the nanocrystalline YSZ powders. The electrolyte films adhered well to the anode substrates by controlling the anode composition. An anode-supported solid oxide fuel cell (SOFC) with a dense YSZ electrolyte film of 8 μm in thickness was operated at temperatures from 700 to 800 °C using humidified (3 vol% H 2O) hydrogen as fuel and air as oxidant. An open circuit voltage of 1.06 V and a maximum power density of 791 mW cm −2 were achieved at 800 °C. The results indicate that the gas permeation through the electrolyte film was negligible, and that good performance can be obtained by this simple and cost-effective technique which can significantly reduce the fabrication cost of SOFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.