Abstract

This study focuses on the optimization of electrophoretic deposition (EPD) and suspension parameters for producing PEEK-hydroxyapatite (HA) coatings with feasible microstructure, adhesion strength, and in-vitro bioactivity. Nanostructured hydroxyapatite (HA) micro-granules were incorporated with PEEK to form PEEK-hydroxyapatite composite coatings via EPD. After EPD, a heat-treatment at 375 °C was applied for densification of the coatings and for enhancing the adhesion between the coatings and the substrates. It was found that both adhesion strength and in-vitro bioactivity of the coatings were dependent on the PEEK and HA relative contents. Thus, increasing the amount of HA improved the bioactivity while decreased the adhesion strength of the coatings. Apatite-like layer formation was observed on coatings with high HA content after incubation for three days in simulated body fluid (SBF). Finally, a deposition mechanism was proposed for the EPD of the PEEK-hydroxyapatite composite system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call