Abstract
Multiple forms of the extracellular dextransucrase [EC 2.4.1.5] from Leuconostoc mesenteroides NRRL B-512F strain were characterized by polyacrylamide gel electrophoresis. Based on the Rm (Relative mobility) values, a newly devised simple plot of log (Rm X 10/(1-Rm)) vs. degree of association of the enzyme showed a good correlation with the results obtained by the Hedrick-Smith method. Both results indicated that the B-512F dextransucrase aggregates were a mixture of two types of forms, i.e., oligomers of a 65 kDa protomer and their charge isomers. Boiling and treatment of the enzyme at pH 10.5 suggested that enzyme aggregates contained dextran or its fragments bound to the enzyme and the enzyme-dextran complex showed the charge isomerism. Since the highly aggregated forms showed higher activity for dextran synthesis than the dissociated forms, the endogenous dextran may serve as a source of primer and may stabilize the enzyme molecule. Besides allosteric regulation of the activity, the occurrence of oligomeric forms of the enzyme may play an important role in the control of dextran synthesis in vivo.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have