Abstract
The present article deals with the theoretical study on electrophoresis of hydrophobic and dielectric spherical fluid droplets possessing uniform surface charge density. Unlike the ideally polarizable liquid droplet bearing constant surface ζ-potential, the tangential component of the Maxwell stress is nonzero for dielectric fluid droplets with uniform surface charge density. We consider the continuity of the tangential component of total stress (sum of the hydrodynamic and Maxwell stresses) and jump in dielectric displacement along the droplet-to-electrolyte interface. The typical situation is considered here for which the interfacial tension of the fluid droplet is sufficiently high so that the droplet retains its spherical shape during its motion. The present theory can be applied to nanoemulsions, hydrophobic oil droplets, gas bubbles, droplets of immiscible liquid suspended in aqueous medium, etc. Based on weak field and low charge assumptions and neglecting the Marangoni effect, the resultant electrokinetic equations are solved using linear perturbation analysis to derive the closed form expression for electrophoretic mobility applicable for the entire range of Debye-Hückel parameter. We further deduced an alternate approximate expression for electrophoretic mobility without involving exponential integrals. Besides, we have derived analytical results for mobility pertaining to various limiting cases. The results are further illustrated to show the impact of pertinent parameters on the overall electrophoretic mobility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.